
Virtuoso Infotech Pvt. Ltd.

Fastest growing IT firm; Offers the flexibility of a small firm and

robustness of over 30 years experience collectively within the

leadership team

Technology expertise & passionate team

Successful client engagements across India, USA, UK,

Australia and Argentina

Handle enterprise solutions that involve 30,000 active users,

more than 20 servers, data volume as big as 5 million

entries per day

About Virtuoso Infotech

OAuth 2.0

Aakash Gaikwad

History

Introduction to OAuth

OAuth 1.0 and OAuth 2.0 difference.

OAuth 2.0 flow.

Basic Concepts in OAuth 2.0

Grant Types

Making Authenticated Requests

Common OAuth 2.0 Security Issues

Agenda

If a third party wanted access to an account, you’d give them your

password.

History

Apps store the user’s password.

Apps get complete access to a user’s account.

Users can’t revoke access to an app except by changing their

password.

Compromised apps expose the user’s password.

Many services implemented things similar to OAuth 1.0.

Each implementation was slightly different, certainly not compatible

with each other.

Problems

OAuth stands for “Open Authorization” .

An open standard protocol that provides simple and secure

authorization for different types of applications.

A simple and safe method for consumers to interact with protected

data.

Allows providers to give access to users without any exchange of

credentials Designed for use only with HTTP protocol.

What is OAuth?

OAuth is created by studying each of the proprietary protocols.

It is flexible, compatible and designed to work with all applications

Provides a method for users to grant third-party access to their

resources without sharing their credentials.

Provides a way to grant limited access in terms of scope and duration.

Why OAuth?

More OAuth Flows to allow better support for non-browser based

applications.

OAuth 2.0 no longer requires client applications to have cryptography.

OAuth 2.0 signatures are much less complicated.

OAuth 2.0 Access tokens are "short-lived".

OAuth 2.0 is meant to have a clean separation of roles.

Difference between OAuth 1.0 and OAuth 2.0

OAuth 2.0 flow

Basic Concepts

OAuth defines four roles:

Resource owner (the user)

Resource server (the API):must be able to accept and validate

access tokens and grant the request.

Authorization server: Shows Auth prompt, grants access token etc.

Client (the third-party app):

1. Confidential Clients(web apps)

2. Public Clients

Roles

Permissions asked by client

when requesting a token.

Scopes

Tokens

Short- lived token used

by Client to access

Resource Server (API)

No client authentication

required (Public Clients)

Usually can’t be revoked

Access Token (Required)

Long- lived token that is used

by Client to obtain new access

tokens from Authorization

Server.

Usually requires Confidential

Clients with authentication

Can be revoked

Refresh Token (Optional)

The client_id is a public identifier for apps.

It’s best that it isn’t guessable by third parties.

Implementations use something like a 32-character hex string.

It must also be unique across all clients.

Client ID

The client_secret is a secret known only to the application and the

authorization server.

It must be sufficiently random to not be guessable.

Generate a secure secret by using 256-bit value and converting it to

a hexadecimal representation.

Client Secret

Grant Types

Web-server apps – authorization_code

Browser-based apps – implicit

Username/password access – password

Application access – client_credentials

Mobile apps – implicit

Web Server Apps
Authorization Code Grant

Create a “Log In” link

Link to:

https://facebook.com/dialog/oauth?response_

type=code&client_id=YOUR_CLIENT_ID&redirect_uri=REDIRECT_

URI&scope=email

client_id:It is the identifier for your app

response_type: is set to code indicating that you want an authorization

code as the response.

redirect_uri (optional):This is the URL to which you want the user to be

redirected after the authorization is complete.

scope (optional):Include one or more scope values to request additional

levels of access.

state (recommended):The state serves as a parameter.

Authorization Grant Parameters

User visits the authorization page

Continue..

On success, user is redirected back to your site with auth code.

https://example.com/auth?code=AUTH_CODE_HERE

On error, user is redirected back to your site with error code.

https://example.com/auth?error=access_denied

Server exchanges auth code for an access token

Your server makes the following request

POST

https://graph.facebook.com/oauth/access_token

Post Body:

grant_type=authorization_code&code=CODE&redirect_uri=REDIRECT

_URI&client_id=YOUR_CLIENT_ID

&client_secret=YOUR_CLIENT_SECRET

Exchanging code for an access token

Your server gets a response like the following

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia", "token_type":"bearer",

"expires_in":3600, "refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

or if there was an error

{

"error":"invalid_request"

}

Browser-Based Apps
ImplicitGrant

Create a “Log In” link

Link to:

https://facebook.com/dialog/oauth?response_type=token&client_id=CLIE

NT_ID &redirect_uri=REDIRECT_URI&scope=email

User visits the authorization page
https://facebook.com/dialog/oauth?response_type=token&client_id=286536

8247587&redirect_uri=everydaycity.com&scope=email

Continue..

On success, user is redirected back to your site with the access

token in the fragment

https://example.com/auth#token=ACCESS_TOKEN

On error, user is redirected back to your site with error code

https://example.com/auth#error=access_denied

Browser-Based Apps

Use the “Implicit” grant type

No server-side code needed

Client secret not used

Browser makes API requests directly

Username/Password
PasswordGrant

Password Grant

For trusted clients only (first-party apps).

Only appropriate for your service’s

website or your service’s mobile apps.

Continue..

POST

https://api.example.com/oauth/token

Post Body:

grant_type=password&username=USERNAME&password=PASSWORD

&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET

Response:

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia","token_type":"bearer,

"expires_in":3600, "refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

Application Access
Client CredentialsGrant

Client CredentialsGrant

POST

https://api.example.com/1/oauth/token

Post Body:

grant_type=client_credentials&client_id=CLIENT_ID&client_secret=YO

UR_CLIENT_SECRET

Response:

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia",

"token_type":"bearer", "expires_in":3600,

"refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

Mobile Apps
ImplicitGrant

Redirect back to your app

Facebook app redirects back to your app using a custom URI

scheme.

Access token is included in the redirect, just like browser-based

apps.

fb2865://authorize/#access_token=BAAEEmo2nocQBAFFOeRTd

Mobile Apps

Use the “Implicit” grant type

No server-side code needed

Client secret not used

Mobile app makes API requests directly

There are two ways API servers may accept Bearer tokens.

1. As a Header parameter.

2. As a Body parameter.

Passing in the access token in an HTTP header:

POST /resource/1/update HTTP/1.1

Authorization: Bearer RsT5OjbzRn430zqMLgV3Ia"

Host: api.authorization-server.com

description=Hello+World

Making Authenticated Requests

If the service accepts access tokens in the post body, then you can

make a request like the following:

POST /resource/1/ HTTP/1.1

Host: api.authorization-server.com

access_token=RsT5OjbzRn430zqMLgV3Ia

&description=Hello+World

Continue..

Common OAuth 2.0 Security Issues

Too many inputs that need validation

 Token hijacking with CSRF

• Always use CSRF token with state parameter .Leaking

authorization codes or tokens through redirects

• Always whitelist redirect URIs and ensure proper URI validations

 Token hijacking by switching clients

• Bind the same client to authorization grants and token requests

 Leaking client secrets

Thank You!

Virtuoso InfoTech Pvt. Ltd.
4th Floor, Victory Landmark, Opp. D-
Mart,
Behind Dominos Pizza, Baner, Pune.

+91 20 6050 1318
support@virtuositech.com

www.virtuosoitech.com

http://virtuosoitech.com/

